Control Systems

- **def**: collection of mechanical and electrical devices that controls the operation of a *physical plant*
- requires ≥ 1 output devices (open loop) and ≥ 1 input devices (closed loop)
- originally: elec. circuits & mech. devices
 now: µP-based with control algorithm in software
Processor-based Control Systems

"Control Theory"†

- various models
 - finite state machines
 - fuzzy logic / neural networks
 - linear systems
 - PID (classical)

- our main interest here is with PID

Block Diagram

- text...
Components - 1

1. **Real state variables,** \(X(t) \) – properties of the physical plant being controlled
 - requires sensor(s) and state estimator to produce *estimated state variables*, \(X'(t) \)

2. **Desired state variables,** \(X^*(t) \) – what the system seeks for \(X(t) \)

Components - 2

3. **Control outputs,** \(U(t) \) – output commands to devices that affect the physical plant
 - typically control actuators which produce driving forces, \(V(t) \)

4. **Control algorithm** – generates \(U(t) \)
 - based on error: \(E(t) = X^*(t) - X'(t) \)
 - goal of a control system: minimize \(E(t) \)
Control System Effectiveness

- determined by 3 properties:
 1. **steady-state error**: average value of $E(t)$
 2. **transient response**: how long it takes system to reach 99% of final output after X' or X^* is changed
 3. **stability**: if a steady state is reached after a change in X' or X^*
 - i.e., no oscillations

Open-loop Systems

- no feedback, \(\therefore \) no state estimator

- examples:
 - toaster – fixed amount of time
 - traffic light – ditto. Must be closed-loop if goal is to maximize traffic flow!
 - OL stepper motor controller – no encoder
Closed-loop Systems

- includes feedback/state estimator
- examples:
 - robot arm incremental control – $U(t)$ is incremented, decremented, or left alone
 - temperature control – add heat or not (bang bang), assumes passive heat loss
 - can add hysteresis with 2 set points: T_{Hr}, T_{L}

Example Closed-loop System†: a "bang-bang" temperature controller

† from "Embedded Microcomputer Systems", J. Valvano, 2007
PID Systems

- from linear control theory
- faster, more accurate, better control

\[U(t) = k_p \cdot E(t) + k_i \cdot \int_0^t E(\tau) d\tau + k_d \cdot \frac{dE(t)}{dt} \]

- the k's are design parameters, aka gains
 - determined using control theory and Laplace / Laplace\(^{-1}\) transforms
 - the I term addresses steady state error, the D term addresses transient error

PID Controller Block Diagram

- ideal / parallel form:

 \[E(t) = SP - PV \quad (\text{desired} - \text{current}) \]
 \[U(t) = k_p \cdot E(t) + k_i \cdot \int_0^t E(\tau) d\tau + k_d \cdot \frac{dE(t)}{dt} \]
Types of PID Controllers

- consider values of the gains:

<table>
<thead>
<tr>
<th>Type</th>
<th>K_p</th>
<th>K_i</th>
<th>K_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital PID Implementation

- break $U(t)$ into separate terms & convert to \textit{discrete time}
- \textit{discrete time}: fixed period, like DSP (Δt)

\[U(t) = P(t) + I(t) + D(t) \]

\[P(t) = k_p \cdot E(t) \quad \rightarrow \quad P(n) = k_p \cdot E(n) \]
Digital PID Implementation

\[I(t) = k_i \int_0^t E(\tau) \, d\tau \rightarrow I(n) = k_i \sum_{i=1}^\infty E(i) \cdot \Delta t \]

\[D(t) = k_d \frac{dE(t)}{dt} \rightarrow D(n) = k_d \frac{E(n) - E(n-1)}{\Delta t} \]

- noise-prone, better to use average of 2 derivatives over different time spans

Digital PID Implementation

- combining, we now have:

\[U(n) = k_p \cdot E(n) + k_i \cdot \sum_{i=1}^\infty E(i) \cdot \Delta t + k_d \cdot \left[\frac{E(n) - E(n-1)}{\Delta t} \right] \]

- \(\Delta t \) can be factored into \(k_i \) & \(k_d \), so:

\[U(n) = k_p \cdot E(n) + k'_i \cdot \sum E(n) + k'_d \cdot \left[E(n) - E(n-1) \right] \]
Digital PID Implementation

\[U(n) = k_p \cdot E(n) + k_i \cdot \sum E(n) + k_d \cdot [E(n) - E(n-1)] \]

- this can easily be implemented in code based on the 3 gains & 2 "history" (state) variables:
 1. accumulated error ("istate"): \(I(n) = I(n-1) + E(n) \)
 2. previous error ("dstate"): \(E(n-1) \)

- however: this requires precision in acquiring \(y(t) \) and processing \(u(n) \) at exact \(\Delta t \) intervals
 - hence: our task scheduler!

PID Implementation: Data structure

```c
/*
 * Abstraction of a PID controller as a C structure
 */
typedef struct {
    // gain factors
    float pGain, // proportional
    iGain, // integral
    dGain; // derivative
    // allowable range of integrator state values to prevent windup
    float iMax, // max allowed
    iMin; // min allowed
    // running state variables
    float iState; // integrator state
    float dState; // derivative state
} Spid;
```
Processor-based Control Systems

PID Implementation: "update" function

```c
/* implementation of discretized version of parallel form of PID controller */
float PID_Update(Spid *pid, float current, float desired)
{
    float error, pTerm, iTerm, dTerm;
    // calculate error
    error = desired - current;
    // calculate the proportional term
    pTerm = pid->pGain * error;
    // calculate integral of error as running total
    pid->iState += error;
    // perform limiting of integral state to prevent windup
    if (pid->iState < pid->iMin) pid->iState = pid->iMin;
    if (pid->iState > pid->iMax) pid->iState = pid->iMax;
    // calculate the integral term
    iTerm = pid->iGain * pid->iState;
    // calculate the derivative term from delta-error
    dTerm = pid->dGain * (error - pid->dState);
    // remember current value for next update
    pid->dState = error;
    // calculate & return PID result
    return pTerm + iTerm + dTerm;
}
```

References

- PID process control, a “Cruise Control” example
 - http://www.codeproject.com/Articles/36459/PID-process-control-a-Cruise-Control-example

- PID Theory
 - http://pcbheaven.com/wikipages/PID_Theory

- Understanding PID Control (toilet ex.)

- PID Controller